Circle of Euler

V geometrii je Eulerova kruh z trojúhelníku (také nazývaný devíti bod kruh , kruh Feuerbach , kruh Terquem , prostřední kruh ) je unikátní kruh přes devět těchto významných bodů:

Objev

V roce 1821 francouzští matematici Brianchon a Poncelet společně prokázali, že středy po stranách a nohy výšek trojúhelníku jsou cyklické: zdůrazňují tak existenci kruhu procházejícího těmito šesti pozoruhodnými body. Následující rok výsledek znovu objevil německý zeměměřič Feuerbach . Eulerův kruh se také nazývá Feuerbachův kruh. Navíc ještě v roce 1822 demonstroval, že kružnice devíti bodů je tečná externě k excipovaným kruhům a interně tečná k vepsané kružnici trojúhelníku. Tento výsledek se nazývá Feuerbachova věta a přidává čtyři nové pozoruhodné body: kontaktní body, nazývané Feuerbachovy body .

Poté Terquem prokázal, že do tohoto kruhu patří další tři body: středy segmentů tvořené vrcholy trojúhelníku a orthocentrem. V roce 1842 poskytl Terquem druhý důkaz Feuerbachovy věty. Třetí geometrický důkaz byl poskytnut v roce 1854.

Od té doby bylo do seznamu bodů v kruhu přidáno několik desítek dalších významných bodů trojúhelníku.

Geometrická demonstrace

Důkaz homothety

Kružnice devíti bodů Eulera je homotetická z kruhu ohraničeného na trojúhelník ve dvou homothetych:

Homothety centra G

Označme I 1 střed [ BC ], I 2 střed [ AC ] a I 3 střed [ AB ]. Homothety středu G a poměr -1/2transformuje trojúhelník na střední trojúhelník a kruh ohraničený na kruh ohraničený  : tento poslední kruh je přesně Eulerův kruh .


Nechť H je bod zarovnaný s G a O , homothety se středem G a poměrem -1/2transformuje do O  : pak H je ortocentrum trojúhelníku ABC . Nechť A 1 je symetrický k A vzhledem k O a vezměme si trojúhelník AHA 1  : G je jeho těžiště, protože v2/3od přímky spojující vrchol H s bodem O , středem strany AA 1 ; AG je další medián; I 1 je tedy střed HA 1 , řádky ( OI 1 ) a ( AH ), jsou tedy rovnoběžné, a . Protože ( OI 1 ) je kolmý k ( BC ) konstrukcí kruhu ohraničeného trojúhelníkem ABC , přímka ( AH ) je jeho výška, stejně jako ( BH ) a ( CH ) ze stejného uvažování.

H- střed homothety

Homothety středu H a poměr1/2, transformuje A 1 na I 1 , stejným způsobem jsou body I 2 a I 3 obrazy dvou bodů ohraničené kružnice. Eulerova kružnice ohraničená na trojúhelník je obrazem kružnice ohraničené v homotety středu H a poměru1/2.

Označíme K 1 , průsečík výšky ( AH 1 ) s ohraničenou kružnicí (jiný než A ) . Segment [ AA 1 ], který je průměrem, je trojúhelník AK 1 A 1 vepsaný do půlkruhu obdélníkem. Přímky ( BC ) a ( K 1 A 1 ), kolmé na výšku ( AH 1 ), jsou rovnoběžné. Přímka ( I 1 H 1 ) prochází středem I 1 [ HA 1 ], je to čára středů HA 1 K 1 , H 1 je tedy středem [ HK 1 ]. Přímka ( HK 1 ) je kolmá na ( BC ), K 1 je symetrická k H vzhledem k ( BC ).

Symetrické linie orthocentra vzhledem ke stranám trojúhelníku jsou umístěny na kružnici ohraničené trojúhelníkem.

Bod H 1 je střed [ HK 1 ], takže obraz K 1 u centra stejnolehlost H . Jelikož K 1 se nachází na opsané kružnici, H 1 je na Eulerově kružnici.

Nohy výšek jsou umístěny na Eulerově kruhu.

Homothety se středem H transformuje vrcholy trojúhelníku do středů segmentů [ AH ], [ BH ] a [ CH ], což jsou tři Eulerovy body K 1 , K 2 , K 3 umístěné na kružnici.

Byl to matematik Leonhard Euler, který si poprvé všiml, že v libovolném trojúhelníku ( ABC ) je těžiště G , střed ohraničené kružnice Ω a ortocentrum H vyrovnány. (Přesně homothety středu G a poměr -1/2transformuje H na O. )

Některé vlastnosti

Pomocí homothety uvedené v prvním odstavci ukážeme, že:

     a     

co se usuzovat, že v trojúhelníku, střed kruhu Euler , je na střed [ HO ], úsečky spojující orthocenter H na circumcenter O .

Pascalův hexagram

Věta  -  V zapisovatelný šesticípé hvězdy protilehlé strany protínají v P , Q a R . Body P , Q a R jsou zarovnány na Pascalově linii ( PQ ).


Protilehlé strany šestiúhelníku přes H 1 I 2 H 2 I 3 H 3 I 2 H 1 , vepsaný do kruhu Eulerovy protínají v P , Q a R .

Projektivní vlastnost, kterou Euler neviděl:

Pascal právo hexagramu je Euler linie trojúhelníku.

Zobecnění

Eulerovy kruh je zvláštní případ kuželovité části , kde to bylo považováno za tři vrcholy , B a C a její orthocenter H . Tyto čtyři body tvoří úplný čtyřúhelník, ale především ortocentrický systém . Pokud vezmeme v úvahu úplný čtyřúhelník, který není ortocentrický, najdeme podobnou vlastnost tím, že ukážeme, že křižovatka prochází průsečíky úhlopříček a středů šesti stran čtyřúhelníku. Křivka je elipsa, pokud H je uvnitř ABC , a hyperbola, pokud ne (je dokonce rovnostranná, pokud H je na ohraničené kružnici ABC ).

Podívejte se také

Bibliografie

Poznámky a odkazy

  1. Tento pravý trojúhelník je vepsán do kruhu se středem a poloměrem .
  2. Trajan Lalesco, Geometrie trojúhelníku , Paříž, Gabay,1987( 1 st  ed. Vuibert - 1952), 120  str. ( ISBN  2-87647-007-1 )
<img src="https://fr.wikipedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" title="" width="1" height="1" style="border: none; position: absolute;">